Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Determining the magnitude and origins of nitrogen (N) deposition in the open ocean is vital for understanding how anthropogenic activities influence oceanic biogeochemical cycles. Excess N in the North Pacific Ocean(NPO) is suggested to reflect recent anthropogenic atmospheric deposition from the Asian continent, changes in nutrient dynamics due to marine N-fixation, and/or lateral transport of nutrients. We investigate the impact of anthropogenic and marine sources on reactive N deposition in the NPO, with a focus on ammonium (NH4+), an important bioavailable nutrient, using aerosol samples (n =108) collected off the coast of China (Changdao Island). This study site is used as a proxy for continental emissions that can be exported and subsequently deposited to the ocean. The NH4+concentration of aerosol samples varied seasonally (p < 0.05), with a higher average value in winter (2.8 ±1.1 μg/m3) and spring (1.9 ±0.8 μg/m3) compared to autumn (0.7 ±0.6 μg/m3) and summer (1.4 ±0.4 μg/m3). The isotopic composition of aerosol NH4+ varied seasonally, with higher averages in spring (13.3 ±7.9‰) and summer (15.6 ±6.2‰) compared to autumn (3.2 ±2.5 ‰) and winter (3.8 ±11.4‰). These seasonal patterns in the isotopic composition of NH4+ are investigated based on correlations of aerosol chemical species, seasonal shifts in transport patterns, partitioning of ammonia/ammonium between the gas and particle phase, and continental versus marine sources of ammonia. We find that anthropogenic activities, mainly agricultural practices (e.g., volatilization, fertilizer, animal husbandry), are the primary sources of NH4+ deposited to the NPO.more » « less
-
null (Ed.)Abstract Rivers are the major carriers of dissolved black carbon (DBC) from land to ocean; the sources of DBC during its continuous transformation and cycling in the ocean, however, are not well characterized. Here, we present new carbon isotope data for DBC in four large and two small mountainous rivers, the Yangtze and Yellow river estuaries, the East China Sea and the North Pacific Ocean. We found that the carbon isotope signatures of DBC are relatively homogeneous, and the DBC 14 C ages in rivers are predominantly young and increase during continuous transport and cycling in the ocean. The results of charcoal leaching experiments indicate that DBC is released from charcoal and degraded by bacteria. Our study suggests that riverine DBC is labile and respired during transport and mixing into the ocean and that residual DBC is cycled and aged on the same time scales as bulk DOC in the ocean.more » « less
-
ABSTRACT Radiocarbon ( 14 C) in dissolved inorganic carbon (DIC) was measured for water samples collected from six deep stations in the Kuroshio Extension (KE) region in the northwestern North Pacific in April–May 2015. Vertical profiles of Δ 14 C-DIC indicate that bomb-produced 14 C was present from the surface to ~1500 m water depth. Large variations in Δ 14 C-DIC values (300‰) were observed at 500 m water depth among the stations and the differences were likely controlled by transport and mixing dynamics of different water masses in the region. The major Pacific western boundary currents, such as Kuroshio and Oyashio and regional mesoscale eddies, could play important roles affecting the observed Δ 14 C-DIC variability. The depth profiles of both Δ 14 C-DIC and DIC concentrations can be predicted by the solution mixing model and can be used as conservative tracers of water mass movement and water parcel homogenization in the ocean.more » « less
An official website of the United States government
